Activation of Arene Carbon-Hydrogen Bonds. Direct Electrophilic Aromatic Metallation with a Rhodium-Porphyrin Complex

Yasuhiro Aoyama, Tohru Yoshida, Ken-ichi Sakurai, and Hisanobu Ogoshi"

Department of Material Science, Technological University of Nagaoka, Kamitomioka, Nagaoka, Ni- igata 949-54, Japan

Anion exchange of octaethylporphyrinatorhodium(**III)** chloride with AgCIO₄ or AgBF₄ results in the formation of a highly electrophilic Rh^{III}-porphyrin capable of direct metallation of arenes.

The homogeneous activation of arene carbon-hydrogen bonds by metal complexes involves either oxidative or electrophilic addition of the metal to an arene C-H bond.¹ The great majority of successful arene C-H bond activations by transition metal species, in particular those of group 8 metals, involve an oxidative-addition mechanism.2 A few possible examples of electrophilic aromatic metallation with transition metal species have also been reported.³ We report a clear example of the direct metallation of arenes with a rhodium(III)-porphyrin complex under mild conditions.

The dropwise addition of a solution of octaethylporphyrinatorhodium(III) chloride [(OEP)Rh^{III}(Cl)] (1) (0.58 mm in C_6H_6) to a solution of AgClO₄ or AgBF₄ (slight molar excess in C_6H_6) at 50 °C for 2 h followed by further stirring of the resulting mixture at 25 "C for 48 h resulted in the formation of the phenyl-rhodium(m) derivative **(2a)** in yields of 40 (with AgClO₄) and 70 $\frac{9}{6}$ (with AgBF₄) after purification (Scheme

1). The product was unambiguously identified by comparison with authentic (2a) obtained by reaction (1) $(X = H)$.⁴

 $[(OEP)Rh^{III}(Cl)] + p-X-C₆H₄Li \rightarrow [(OEP)Rh^{III}(p-C₆H₄X)](1)$

The presence of a silver salt was essential for our reaction, and the formation of **(2a)** was completely inhibited by the presence of potentially donor co-solvents such as methanol, tetrahydrofuran, and pyridine, but not by dioxygen. Treatment of (1) with AgClO₄ in CH₂Cl₂ afforded the unstable perchlorate species in *ca.* 30% yield.[†] In an independent experiment, it was found that an isolated perchlorate species

[†] The electronic spectrum is similar (λ_{max} 396, 513, and 548 nm) to that of (1) (λ_{max} 403, 520, and 554 nm) and the i.r. spectrum also is almost identical with that of (1) except for strong absorptions assigna

attacks benzene to form **(2a)** without the participation of a silver salt.

Anisole, toluene, and chlorobenzene reacted similarly with (1) in the presence of AgClO₄ to give the corresponding arylrhodium(III) derivatives $(2b-d)$ in yields of 46, 46, and 18% , respectively. Exclusive metallation at the para-positions of substituted arenes was evident from a comparison of the 'H n.m.r. spectra of **(2b-d)** with those of **(2b)** and **(2c)** prepared by an alternative method [reaction **(1)].\$**

Competitive metallation reactions of $X - C_6H_5$ ($X = H$, OMe, Me, and C1) show relative rate increases with increasing electron-donating abilities of the substituents: X (relative

rate); OMe (1, standard), Me **(0.15),** H **(0.014** after statistical correction for **6H),** and C1 (0.0020). The logarithmic relative rates are correlated in the Hammett equation $(r = 0.985)$ and give a ρ value of -5.32 . Interestingly, the observed p value is comparable to that for the nitration of monosubstituted benzenes with the nitronium ion,⁵ a typical example of electrophilic aromatic substitutions.

The large negative ρ value, coupled with the highly regioselective para-metallation,§ may characterize the present reaction as an (ionic) electrophilic aromatic metallation with an electrophilic intermediate generated from the reaction of **(1)** with silver salts. Similarly, mechanisms involving radical species can be ruled out. In particular, there is no evidence of isomers resulting from reaction at the *meta*-position, or of cleavage of potentially reactive methyl C-H bonds of toluene and anisole. The lack of an inhibitory effect by dioxygen provides additional evidence for the exclusion of radical mechanisms.

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture.

Received, 6th January 1983 ; *Corn. 032*

Ref ere n ces

- 1 W. Kitching, Organomet. Chem. Rev., **1968,3,35; A.** McKillop, J. D. Hunt, **M.** J. Zelesko, J. S. Fowler, E. C. Taylor, **G.** McGillivray, and **F.** Kienzle, *J.* Am. Chem. *Sac.,* **1971, 93, ⁴⁸⁴¹**; D. R. Harvey and R. 0. C. Norman, *J. Chem. Soc.,* **1964, 4860.**
- **2** J. Halpern, *Discuss. Faraday SOC.,* **1968, 46, 7;** G. **W.** Parshall, *Acc.* Chem. Res., **1970, 3, 139;** G. **W.** Parshall, *ibid.,* **1975, 8, 113;** J. Dehand and **M.** Pfeffer, *Coord.* Chem. Rev., **1976, 18, 327; A. E.** Shilov and **A. A.** Shteiman, *ibid.,* **1977,24,97.**
- 3 S. Hietkamp, D. J. Stufkens, and K. Vrieze, *J. Organomet*. Chem., **1979, 168, 351** ; G. **B.** Shul'pin, **L. P.** Rozenberg, R. P. Shibaeva, and **A. E.** Shilov, *Kinet. Katal.,* **1979, 20, 1570;** G. **B.** Shul'pin, A. E. Shilov, and A. N. Kitaigorodskii, *J. Organomet.* Chem., **1980, 201, 319.**
- **4** H. Ogoshi, J. Setsune, T. Omura, and Z. Yoshida, *J.* Am. Chem. *SOC.,* **1975, 97, 6461.**
- **5 J. D.** Roberts, **J.** K. Sanford, F. **L.** J. Sixma, **H.** Cerfontain, and R. Zagt, *J.* Am. Chem. *SOC.,* **1954, 76,4525; H.** C. Brown and Y. Okamoto, *ibid.,* **1957, 79, 1913.**

Q The absence of an ortho-attack may be due to a steric effect.

 \ddagger ¹H N.m.r. chemical shifts (δ /p.p.m. from Me₄Si in CDCl₃) for aromatic protons *ortho* and *meta* to rhodium: **(2b)**, -0.44 **(***o*) and *ca.* **4.1 (***m*, overlapping with CH₂CH₃); **(2c)**, -0.43 **(***o*) and **4.31** (m); **(2d), -0.49** *(0)* and **4.43** (m).